
In this second article on the risks of uncertainty, 
we build upon the basics of risk and uncertainty 
addressed in the first article published in the April 
2009 issue of Student Accountant to examine 
more advanced aspects of incorporating risk into 
decision making. 

In particular, we return to the use of  expected 
values and examine the potential impact of  the 
availability of  additional information regarding the 
decision under consideration. Initially, we examine 
a somewhat artificial scenario, where it is possible 
to obtain perfect information regarding the future 
outcome of  an uncertain variable (such as the state 
of  the economy or the weather), and calculate the 
potential value of  such information. Subsequently, 
the analysis is revisited and the more realistic case 
of  imperfect information is assumed, and the initial 
probabilities are adjusted using Bayesian analysis.

Some decision scenarios may involve two 
uncertain variables, each with their own associated 
probabilities. In such cases, the use of  data/
decision tables may prove helpful where joint 
probabilities are calculated involving possible 
combinations of  the two uncertain variables. These 
joint probabilities, along with the payoffs, can then 
be used to answer pertinent questions such as what 
is the probability of  a profit/(loss) occurring?

The other main topic covered in the article is that 
of  Value-at-Risk (VaR), which has been referred 
to as ‘the new science of  risk management’. The 
principles underlying VaR will be discussed along 
with an illustration of  its potential uses.

EXPECTED VALUES AND INFORMATION
To illustrate the potential value of  additional 
information regarding the likely outcomes resulting 
from a decision, we return to the example given 
in the first article, of  the ice cream seller who is 
deciding how much ice cream to order but is unsure 
about the weather. We now add probabilities to the 
original information regarding whether the weather 
will be cold, warm or hot, as shown in Table 1.

TABLE 1: ASSIGNING PROBABILITIES TO WEATHER

Order/weather Cold Warm Hot
Probability 0.2 0.5 0.3
Small $250 $200 $150
Medium $200 $500 $300
Large $100 $300 $750

We are now in a position to be able to calculate the 
expected values associated with the three sizes of  
order, as follows:

Expected value (small) = 0.2 ($250) + 0.5 ($200) 
+ 0.3 ($150) = $195
 
Expected value (medium) = 0.2 ($200) + 0.5 ($500) 
+ 0.3 ($300) = $380
 
Expected value (large) = 0.2 ($100) + 0.5 ($300) 
+ 0.3 ($750) = $395

On the basis of  these expected values, the optimal 
decision would be to order a large amount of  
ice cream with an expected value of  $395. However, 
it may be possible to improve upon this value if  
better information regarding the weather could 
be obtained. Exam questions often make the 
assumption that it is possible to obtain perfect 
information, ie to predict exactly what the outcome 
of  the uncertain variable will be.

THE VALUE OF PERFECT INFORMATION
In the case of  the ice cream seller, perfect information 
would be certainty regarding the outcome of  
the weather. 
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If  this was the case, then the ice cream seller 
would purchase the size of  order which gave the 
highest payoff  for each weather outcome – in other 
words, purchasing a small order if  the weather 
was forecast to be cold, a medium order if  it 
was forecast to be warm, and a large order if  the 
forecast was for hot weather. The resulting expected 
value would then be:

Expected value  =  0.2 ($250) + 0.5 ($500) + 0.3 
($750) = $525
The value of  the perfect information is the 
difference between the expected values with and 
without the information, ie

Value of  information =  $525 - $395  =  $130

Exam questions are often phrased in terms of  the 
maximum amount that the decision maker would be 
prepared to pay for the information, which again is 
the difference between the expected values with and 
without the information.

However, the concept of  perfect information is 
somewhat artificial since, in the real world, such 
perfect certainty rarely, if  ever, exists. Future 
outcomes, irrespective of  the variable in question, 
are not perfectly predictable. Weather forecasts or 
economic predictions may exhibit varying degrees 
of  accuracy, which leads us to the concept of  
imperfect information.

THE VALUE OF IMPERFECT INFORMATION
With imperfect information we do not enjoy the 
benefit of  perfect foresight. Nevertheless, such 
information can be used to enhance the accuracy 
of  the probabilities of  the possible outcomes 
and therefore has value. The ice cream seller may 
examine previous weather forecasts and, on that 
basis, estimate probabilities of  future forecasts 
being accurate. For example, it could be that 
when hot weather is forecast past experience has 
suggested the following probabilities: 

P (forecast hot but weather cold) 0.3
P (forecast hot but weather warm) 0.4
P (forecast hot and weather hot) 0.7

The probabilities given do not add up to 1 and 
so, for example, P (forecast hot but weather cold) 
cannot mean P (weather cold given that forecast 
was hot), but must mean P (forecast was hot given 
that weather turned out to be cold).

 
We can use a table to determine the required 
probabilities. Suppose that the weather was recorded 
on 100 days. Using our original probabilities, we 
would expect 20 days to be cold, 50 days to be 
warm, and 30 days to be hot. The information from 
our forecast is then used to estimate the number 
of  days that each of  the outcomes is likely to occur 
given the forecast (see Table 2):

TABLE 2: LIkELy WEATHER OUTCOMES

Outcome/
Forecast Cold Warm Hot Total
Hot   6** 20 21 47
Other 14 30   9 53
 20* 50 30 100

* From past data, cold weather occurs with 
probability of  0.2, ie on 0.2 of  the 100 days in 
the sample = 20 days. Other percentages are also 
derived from past data.

** If  the actual weather is cold, there is a 0.3 
probability that hot weather had been forecast. 
This will occur on 0.3 of  the 20 days on which the 
weather was poor = 6 days (0.3 x 20). Similarly, 20 
= 0.5 x 40 and 21 = 0.7 x 30.

The revised probabilities, if  the forecast is hot, 
are therefore:

P(Cold)       =  6/47 =  0.128 
P(Warm)      = 20/47 =  0.425 
P(Hot)  =  21/47 =  0.447
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The expected values can then be recalculated as:

Expected value (small) = 0.128 ($250) + 0.425 
($200) + 0.447 ($150) = $184
 
Expected value (medium) = 0.128 ($200) + 0.425 
($500) + 0.447 ($300) = $372
 
Expected value (large) = 0.128 ($100) + 0.425 
($300) + 0.447 ($750) = $476

Value of  imperfect information =  $476 - $395 = 81

The estimated value for imperfect information 
appears reasonable, given that the value we had 
previously calculated for perfect information 
was $130.

BAyES’ RULE
Bayes’ rule is perhaps the preferred method for 
estimating revised (posterior) probabilities when 
imperfect information is available. An intuitive 
introduction to Bayes’ rule was provided in The 
Economist, 30 September 2000:

‘The essence of the Bayesian approach is to provide 
a mathematical rule explaining how you should change 
your existing beliefs in the light of new evidence. 
In other words, it allows scientists to combine new 
data with their existing knowledge or expertise. The 
canonical example is to imagine that a precocious 
newborn observes his first sunset, and wonders whether 
the sun will rise again or not. He assigns equal prior 
probabilities to both possible outcomes, and represents 
this by placing one white and one black marble into a 
bag. The following day, when the sun rises, the child 
places another white marble in the bag. The probability 
that a marble plucked randomly from the bag will be 
white (ie the child’s degree of belief in future sunrises) 
has thus gone from a half to two-thirds. After sunrise 
the next day, the child adds another white marble, and 
the probability (and thus the degree of belief) goes from 
two-thirds to three-quarters. And so on. Gradually, the 
initial belief that the sun is just as likely as not to rise 
each morning is modified to become a near-certainty 
that the sun will always rise.’ 

In mathematical terms, Bayes’ rule can be 
stated as:

Posterior probability = likelihood x prior probability
                                          marginal likelihood

For example, consider a medical test for a particular 
disease which is 90% accurate, ie if  you test 
positive then there is a 90% probability that you 
have the disease and a 10% probability that you 
have been misdiagnosed. If  we further assume that 
3% of  the population actually have this disease, 
then the probability of  having the disease (given 
that you have tested positive) is shown by:

P(Disease|Test = +) = 
              P(Test = +|Disease) x P(Disease)               
P(Test = +|Dis) x P(Dis) + P(Test= +|No Dis) x P(No Dis)

=            0.90  x  0.03              =        0.027       
   0.90 x 0.03  +   0.10 x 0.97      0.027 + 0.097

=       0.218

This result suggests that you have a 22% probability 
of  having the disease, given that you tested positive. 
This may seem a low probability but only 3% of  
the population have the disease and we would 
expect them to test positive. However, 10% of  
tests will prove positive for people who do not have 
the disease. Therefore, if  100 people are tested, 
approximately three out of  the 13 positive tests will 
actually have the disease.

Bayes’ rule has been used in a practical context 
for classifying email as spam on the basis of  
certain key words appearing in the text.
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DATA TABLES
Data tables show the expected values resulting 
from combinations of  uncertain variables, along 
with their associated joint probabilities. These 
expected values and probabilities can then be used 
to estimate, for example, the probability of  a profit 
or a loss.

To illustrate, assume that a concert promoter 
is trying to predict the outcome of  two uncertain 
variables, namely:
1 The number of  people attending the concert, 

which could be 300, 400, or 600 with estimated 
probabilities of  0.4, 0.4, and 0.2 respectively.

2 From each person attending, the profit on drinks 
and confectionary, which could be $2, $4, or 
$6 with estimated probabilities of  0.3, 0.4 and 
0.3 respectively.

As each of  the two uncertain variables can take 
three values, a 3 x 3 data table can be constructed. 
We shall assume that the expected values have 
already been calculated as follows:

Number/spend 300 400 600
$2 (2,000) (1,000) 3,000
$4 (750) 3,000 4,000
$6 1,000 5,000 7,000

The probabilities can be used to calculate joint 
probabilities as follows:

Number/spend 300 400 600
$2 0.12 0.12 0.06
$4 0.16 0.16 0.08
$6 0.12 0.12 0.06

The two tables could then be used to answer 
questions such as:
1 The probability of  making a loss?  =  0.12 + 0.12 

+ 0.16  =  0.40
2 The probability of  making a profit of  more than 

$3,500? = 0.08 + 0.12 + 0.06 = 0.26  

VALUE-AT-RISk (VaR) 
Although financial risk management has been a 
concern of  regulators and financial executives for a 
long time, Value-at-Risk (VaR) did not emerge as a 
distinct concept until the late 1980s. The triggering 
event was the stock market crash of  1987 which 
was so unlikely, given standard statistical models, 
that it called the entire basis of  quantitative finance 
into account.

VaR is a widely used measure of  the risk of  
loss on a specific portfolio of  financial assets. For 
a given portfolio, probability, and time horizon, 
VaR is defined as a threshold value such that the 
probability that the mark-to-market loss on the 
portfolio over the given time horizon exceeds this 
value (assuming normal markets and no trading) 
is the given probability level. Such information can 
be used to answer questions such as ‘What is the 
maximum amount that I can expect to lose over the 
next month with 95%/99% probability?’.

For example, large investors, interested in the 
risk associated with the FT100 index, may have 
gathered information regarding actual returns 
for the past 100 trading days. VaR can then be 
calculated in three different ways:

1 The historical method
 This method simply ranks the actual historical 

returns in order from worst to best, and relies 
on the assumption that history will repeat 
itself. The largest five (one) losses can then be 
identified as the threshold values when identifying 
the maximum loss with 5% (1%) probability.

2 The variance-covariance method
 This relies upon the assumption that the index 

returns are normally distributed, and uses 
historical data to estimate an expected value and 
a standard deviation. It is then a straightforward 
task to identify the worst 5 or 1% as required, 
using the standard deviation and known 
confidence intervals of  the normal distribution, ie 
–1.65 and –2.33 standard deviations respectively.
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3 Monte Carlo simulation
 While the historical and variance-covariance 

methods rely primarily upon historical data, the 
simulation method develops a model for future 
returns based on randomly generated trials. 
Admittedly, historical data is utilised in 
identifying possible returns but hypothetical, 
rather than actual, returns provide the data for 
the confidence levels.

Of  these three methods, the variance-covariance 
is probably the easiest as the historical method 
involves crunching historical data and the Monte 
Carlo simulation is more complex to use.

VaR can also be adjusted for different time 
periods, since some users may be concerned about 
daily risk whereas others may be more interested 
in weekly, monthly, or even annual risk. We can 
rely on the idea that the standard deviation of  
returns tends to increase with the square root of  
time to convert from one time period to another. 
For example, if  we wished to convert a daily 
standard deviation to a monthly equivalent then the 
adjustment would be :

σ monthly = σ daily  x  √T  where  T = 20 trading days

For example, assume that after applying the 
variance-covariance method we estimate that the 
daily standard deviation of  the FT100 index is 
2.5%, and we wish to estimate the maximum 
loss for 95 and 99% confidence intervals for 
daily, weekly, and monthly periods assuming five 
trading days each week and four trading weeks 
each month:

95% confidence
Daily = –1.65 x 2.5% = –4.125% 
Weekly = –1.65 x 2.5% x √5 = –9.22% 
Monthly = –1.65 x 2.5% x √20 = –18.45%

99% confidence
Daily = –2.33 x 2.5% = –5.825% 
Weekly = –2.33 x 2.5% x √5 = –13.03% 
Monthly = –2.33 x 2.5% x √20 = –26.05%

Therefore we could say with 95% confidence that we 
would not lose more than 9.22% per week, or with 
99% confidence that we would not lose more than 
26.05% per month. 

On a cautionary note, New York Times reporter 
Joe Nocera published an extensive piece entitled 
Risk Mismanagement on 4 January 2009, discussing 
the role VaR played in the ongoing financial crisis. 
After interviewing risk managers, the author 
suggests that VaR was very useful to risk experts, 
but nevertheless exacerbated the crisis by giving 
false security to bank executives and regulators. A 
powerful tool for professional risk managers, VaR 
is portrayed as both easy to misunderstand, and 
dangerous when misunderstood.

CONCLUSION
These two articles have provided an introduction 
to the topic of  risk present in decision making, 
and the available techniques used to attempt to 
make appropriate adjustments to the information 
provided. Adjustments and allowances for risk 
also appear elsewhere in the ACCA syllabus, such 
as sensitivity analysis, and risk-adjusted discount 
rates in investment appraisal decisions where 
risk is probably at its most obvious. Moreover 
in the current economic climate, discussion of  
risk management, stress testing and so on is an 
everyday occurrence.

Michael Pogue is assessor for Paper P5
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