

RELEVANT TO FOUNDATIONS IN ACCOUNTANCY PAPER FMA MANAGEMENT ACCOUNTING

Process costing

Process costing is a method of costing used mainly in manufacturing where units are continuously mass-produced through one or more processes. Examples of this include the manufacture of erasers, chemicals or processed food.

In process costing it is the process that is costed (unlike job costing where each job is costed separately). The method used is to take the total cost of the process and average it over the units of production.

Cost per unit = <u>Cost of inputs</u> Expected output in units

Important terms to understand

In a manufacturing process the number of units of output may not necessarily be the same as the number of units of inputs. There may be a loss.

Normal loss

This is the term used to describe normal expected wastage under usual operating conditions. This may be due to reasons such as evaporation, testing or rejects.

Abnormal loss

This is when a loss occurs over and above the normal expected loss. This may be due to reasons such as faulty machinery or errors by labourers.

Abnormal gain

This occurs when the actual loss is lower than the normal loss. This could, for example, be due to greater efficiency from newly-purchased machinery.

Work in progress (WIP)

This is the term used to describe units that are not yet complete at the end of the period. Opening WIP is the number of incomplete units at the start of a process and closing WIP is the number at the end of the process.

Scrap value

Sometimes the outcome of a loss can be sold for a small value. For example, in the production of screws there may be a loss such as metal wastage. This may be sold to a scrap merchant for a fee.

© 2011 ACCA

JUNE 2011

Equivalent units

This refers to a conversion of part-completed units into an equivalent number of wholly-completed units. For example, if 1,000 cars are 40% complete then the equivalent number of completed cars would be 1,000 x 40% = 400 cars. Note: If 1,000 cars are 60% complete on the painting, but 40% complete on the testing, then equivalent units will need to be established for each type of cost. (See numerical example later.)

How to approach process accounting questions

Step 1 Draw up a T account for the process account. (There may be more than one process, but start with the first one initially.) Fill in the information given in the question.

Process account

	Units	\$		Units	\$
Opening WIP	Х	Х	Normal loss	Х	Х
Materials		Х	Transfer to		
			Process 2 or	Х	Х
			Finished goods		
Labour		Х	Abnormal loss	Х	Х
Overheads		Х	Closing WIP	Х	Х
Abnormal gain	Х	Х	_		
-					
			•		

- Step 2 Calculate the normal loss in units and enter on to the Process account. (The value will be zero unless there is a scrap value see Step 4).
- Step 3 Calculate the abnormal loss or gain (there won't be both). Enter the figure on to the Process account and open a T account for the abnormal loss or gain.
- Step 4 Calculate the scrap value (if any) and enter it on to the Process account. Open a T account for the scrap and debit it with the scrap value.
- Step 5 Calculate the equivalent units and cost per unit.
- Step 6 Repeat the above if there is a second process.

Note: Although this proforma includes both losses and WIP, the Paper F2/FMA syllabus specifically excludes situations where both occur in the same process. Therefore, don't expect to have to complete all of the steps in the questions.

JUNE 2011

Normal loss example

Mr Bean's chocolate Wiggly bars pass through two processes. The data for the month just ended are:

		\$	kg			\$
Process 1	Ingredients	5,000	4,000	Process 2	Packaging	10,000
	Labour and	6,000			Labour and	9,000
	overhead				overhead	

Mr Bean allows the staff to eat 5% of the chocolate as they work on Process 1. There was no work in progress at the month end. Prepare the two process accounts and calculate the cost per kg.

Process 1 account

	kg	\$		kg	\$
Ingredients	4,000	5,000	Normal loss (W1)	200	
Labour and		<u>6,000</u>	Transfer to Process	3,800	
overheads			2 (W2)		<u>11,000</u>
	4,000	11,000		4,000	
					<u>11,000</u>

Q = figure taken straight from the information given in the question.

<u>Workings</u>

(1) The staff normally eat 5% of the chocolate, so the normal loss is $4,000 \ge 5\% = 200$ kg

There is no work in progress or scrap value or abnormal losses or gains, so we can now balance the account to obtain the amounts transferred to Process 2.

Number of kg transferred = kg input less normal loss = 4,000 - 200 = 3,800kg

JUNE 2011

Process 2 account

	kg	\$		kg	\$
Transfer from	3,800	11,000	Finished goods	3,800	30,000
Process 1 (above	e)		(balancing figure)		
Packaging		10,000			
Labour and		9,000			
overheads					
	3,800	30,000		3,800	30,000
Cost per kg =	<u>Total cos</u>		<u>\$30,000</u> = \$7.89 p	ber kg	
Ν	lumber of ex	pected kg	3,800		

Abnormal gain example

There is a heatwave and staff have eaten less chocolate. At the end of Process 1, 3,810 units are transferred to Process 2.

Process 1 account

	kg	\$		kg	\$
Ingredients	4,000	5,000	Normal loss	200	
Labour and		6,000	Transfer to Process	3,810	11,029
overheads			2 (W2)		
Abnormal gain (W1+2)	10	29			
(**1 * 2)	4,010	11,029		4,010	11,029

<u>Workings</u>

- (1) As the T account should balance, the abnormal gain = 4,010kg 4,000kg = 10kg
- (2) Cost per kg = $\frac{\text{Costs incurred}}{\text{Expected output in kgs}} = \frac{11,000}{4,000 \times 95\%} = 2.89

Cost of units transferred to Process $2 = $2.89 \times 3,810 = $11,029$ (using \$2.894736842 to avoid rounding differences). Cost of abnormal gain = $$2.89 \times 10 = 29 . [Remember to open an abnormal gain T account and credit it with \$29]

JUNE 2011

Process 2 account

	kg	\$		kg	\$
Transfer from	3,810	11,029	Finished goods	3,810	30,029
Process 1 (above)			(balancing figure)		
Packaging		10,000			
Labour and		9,000			
overheads					
	3,810	30,029		3,810	30,029
Cost per kg = <u>\$30</u> ,	<u>029</u> = \$7	7.88/kg			
3,8	310				

Scrap value example

Mr Bean can no longer afford to give his staff 5% of the bars. He decides to offer the bars to his staff at a discount. They pay 40c for every kg that they eat. As a result of this, there is another abnormal gain of 10kg, so 3,810 units are transferred to Process 2.

Process 1 account

	L				
	kg	\$		kg	\$
Ingredients	4,000	5,000	Normal loss (W1)	200	80
Labour and		6,000	Transfer to	3,810	10,947
overheads			Process 2		
Abnormal gain					
(11,000 – 80) /	10	27			
4,000					
	4,010	<u>11,027</u>		4,010	11,027

Workings

Here we need to calculate the scrap value. The value of units transferred to Process 2 is a balancing figure.

Number of kg of normal loss × scrap amount per kg = 200 × 0.4 = \$80
[Dr Scrap A/C \$80, Cr Process A/C \$80]

Be careful here! The scrap value also affects the abnormal gain or loss accounts. Since the staff didn't eat the number of bars that they were entitled to, the scrap value (the 40c per bar) is lower than $200 \times 40c$. In fact, it is $10 \times 40c = 4 lower (the abnormal gain). This needs to be reflected in the scrap account and the abnormal gain account.

JUNE 2011

Scrap account					
Process 1		80	Abnormal gain		4
		80	Bank		<u>76</u> 80
Abnormal gain A/(2				
Scrap A/C		4	Process 1		27
Income statement		23			
		<u>27</u>			<u>27</u>
Process 2 account					
	kg	\$		kg	\$
Transfer from	3,810	10,947	Finished goods	3,810	29,947
Process 1 (above)		10.000	(balancing figure)		
Packaging		10,000			
Labour and overheads		9,000			·
overneaus	3,810	29,947		3,810	29,947
Cost per kg = <u>\$29,947</u> = 7.86/kg 3,810					

Work in progress example

Assuming at the month end there are now part-completed bars (work-inprogress). Assuming also that he stopped charging staff for the bars that they had eaten. The data for Process 2 was as follows:

Opening WIP Input	\$235 Materials (Ingredients) \$520 Labour and overheads \$8,405 Materials (Packaging) \$6,200 Labour and overheads	100% } 60% }	100kgs 3,500kgs
— (),		J	0.1.0.01
Transferred to	finished goods		3,100kgs
Closing WIP	Materials Labour and overheads	100%	500kgs

For questions that include WIP, we need to calculate equivalent units. First, we need to choose the method of valuing WIP. In an exam, use the first in first out (FIFO) method if the **percentage completion** of each element of opening WIP is given. Use the weighted average (WA) method if the **value** of each element of opening WIP is given. [Note that the two methods give different valuations for the closing WIP.]

JUNE 2011

In the weighted average method, no distinction is made between units of opening inventory and new units introduced to the process during the accounting period.

Step 1 Prepare a statement of equivalent units. Note that opening inventory units count as a full equivalent unit of production when the weighted average cost system is applied.

Kilograms Weighted average			FIFO		
	Material	Lab and O/hd		Material	Lab and O/hd
	kg	kg		kg	kg
Opening WIP	100	100	Opening WIP (100 x 40%)		40
Started and completed (3,100 less op WIP)	3,000	3,000	Started and completed (3,100 less op WIP)	3,000	3,000
Closing WIP 500 × 100% 500 × 20%	500	100	Closing WIP	500	100
Equivalent units	<u>3,600</u>	<u>3,200</u>	Equivalent units	<u>3,500</u>	<u>3,140</u>

Step 2 Prepare a statement of **costs** per equivalent unit

Costs Weighted average			FIFO		
C	Material	Lab and O/hd		Material	Lab and O/hd
Op WIP	\$ 235	\$ 520		\$	\$
Input	8,405	6,200	Input	8,405	6,200
	<u>8,640</u>	<u>6,720</u>		<u>8,405</u>	<u>6,200</u>
Cost per equivalent unit	<u>8,640/3,600</u>	<u>6,720/3,200</u>	Cost per equivalent unit	<u>8,405/3,500</u>	<u>6,200/3,140</u>
Gint	<u>= \$2.40</u>	<u>= \$2.10</u>		<u>= \$2.40</u>	<u>= \$1.975</u>

Total cost per kg = 4.50

Total cost per kg = \$4.375

JUNE 2011

Step 3 Prepare a statement of evaluation

Weighted average Completed kgs		FIFO Op WIP cost + Lab + O/h to finish op WIP:	
3,100 x \$4.50	\$13,950	755 + (\$1.975 x 100 x 40%)	\$834
		Current production \$4.375 x 3,000	\$13,128*
Closing WIP 500 x 20% x \$2.10 500 x \$2.40	\$1,410 <u>\$15,360</u>	Closing WIP 500 x 20% x \$1.975 500 x \$2.40	\$1,398 <u>\$15,360</u>

* Slight difference due to rounding $4.375 \times 3,000 = 13,125$

Step 4 Prepare the Process 2 accounts

Weighted average Process 2 account

TIUCESS Z ACCOUNT					
	kg	\$		kg	\$
Opening WIP	100	755	Completed output	3,100	13,950
Materials	3,500	8,405	(3,100 x \$4.50)		
Labour and		6,200	Closing WIP	500	
overheads					1,410
	3,600	15,360		3,600	
		;			<u>15,360</u>
FIFO					
Process 2 account					
	kg	\$		kg	\$
Opening WIP	100	755	Completed output	3,100	13,962
Materials	3,500	8,405	(834 + 13,128)		
Labour and		<u>6,200</u>	Closing WIP	<u>500</u>	<u>1,398</u>
overheads					
	<u>3,600</u>	<u>15,360</u>		3,600	
					<u>15,360</u>

Heather Freer is management accounting technical author at BPP Learning Media